skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to edit 3D assets with natural language presents a compelling paradigm to aid in the democratization of 3D content creation. However, while natural language is often effective at communicating general intent, it is poorly suited for specifying exact manipulation. To address this gap, we introduce ParSEL, a system that enablescontrollableediting of high-quality 3D assets with natural language. Given a segmented 3D mesh and an editing request, ParSEL produces aparameterizedediting program. Adjusting these parameters allows users to explore shape variations with exact control over the magnitude of the edits. To infer editing programs which align with an input edit request, we leverage the abilities of large-language models (LLMs). However, we find that although LLMs excel at identifying the initial edit operations, they often fail to infer complete editing programs, resulting in outputs that violate shape semantics. To overcome this issue, we introduce Analytical Edit Propagation (AEP), an algorithm which extends a seed edit with additional operations until a complete editing program has been formed. Unlike prior methods, AEP searches for analytical editing operations compatible with a range of possible user edits through the integration of computer algebra systems for geometric analysis. Experimentally, we demonstrate ParSEL's effectiveness in enabling controllable editing of 3D objects through natural language requests over alternative system designs. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025